NH51D-1929
Applications of Radar Interferometric Techniques to Assess Natural Hazards and their Controlling Factors
Friday, 18 December 2015
Poster Hall (Moscone South)
Mohamed Sultan1, Richard Becker2, Esayas G Gebremichael1, Mustafa Emil1, Mohamed Ahmed1, Racha Elkadiri1, Hannah G Pankratz1 and Kyle Chouinard1, (1)Western Michigan University, Kalamazoo, MI, United States, (2)University of Toledo, Toledo, OH, United States
Abstract:
Radar interferometric techniques including Persistent Scatterer (PS), Small BAseline Subset (SBAS), and two and three pass (differential interferometry) methods were applied to Synthetic Aperture Radar (SAR) datasets. These include the European Space Agency (ESA) ERS-1, ERS-2, Environmental satellite (Envisat), and Phased Array type L-band Synthetic Aperture Radar (PALSAR) to conduct the following: (1) map the spatial distribution of land deformation associated with a wide range of geologic settings, (2) quantify the rates of the observed land deformation, and (3) identify the factors controlling the observed deformation. The research topics/areas include: (1) subsidence associated with sediment compaction in a Delta setting (Nile Delta, Egypt), (2) deformation in a rifting setting (Red Sea rifting along the Red Sea coastal zone and proximal basement outcrops in Egypt and Saudi Arabia), (3) deformation associated with salt dome intrusion and the dissolution of sabkha deposits (Jazan area in Saudi Arabia), (4) mass transport associated with debris flows (Jazan area in Saudi Arabia), and (5) deformation preceding, contemporaneous with, or following large earthquakes (in Nepal; magnitude: 7.8; date: April, 25, 2015) and medium earthquakes (in Harrat Lunayyir volcanic field, central Saudi Arabia; magnitude: 5.7; date: May 19, 2009). The identification of the factor(s) controlling the observed deformation was attained through spatial correlation of extracted radar velocities with relevant temporal and static ground based and remotely sensed geological and cultural data sets (e.g., lithology, structure, precipitation, land use, and earthquake location, magnitude, and focal mechanism) in a Geographical Information System (GIS) environment.