B31A-0530
Climatic gradients and human development pressure determine spatial patterns of forest fragmentation in the Great Lakes basin, USA

Wednesday, 16 December 2015
Poster Hall (Moscone South)
William S. Currie, University of Michigan Ann Arbor, Ann Arbor, MI, United States and Stephanie Hart, University of Michigan, School of Natural Resources and Environment, Ann Arbor, MI, United States
Abstract:
Over half of temperate forest area globally has been fragmented or deforested by human activities. Our objective was to gain insight into the combination of climatic, ecological, and social factors that control complex spatial patterns of forest cover and fragmentation at the regional scale. Our study area was the US portion of the land area of the Laurentian Great Lakes basin (USGL basin) of the Upper Midwest, USA, covering ca. 300,000 km2 and home to 25 million people. While this region was historically forested, today there are regional gradients in forest cover as well as complex spatial patterns of agriculture, human settlements, and tree cover. This includes large expanses of fragmented forests in the wildland-urban interface or the forest transition zone.

We used structural equation modeling to test models of social and climatic-ecological factors to explain spatial patterns of forest cover and fragmentation. This is a model-driven approach to statistical analysis that is used to test proposed causal “structures” of direct and indirect relationships among variables. It is an innovative approach that makes use of large spatial datasets to test understanding. We assembled numerous spatial data layers at 1 km2 resolution across the USGL basin. We found that 64% to 75% of variance in tree cover and forest connectivity was explained through a relatively simple model combining climatic gradients and human development pressure. Human development pressure was best represented as a measurement model that explained 45% of variance in road density and 87% of housing unit density, while significantly explaining patterns of forest fragmentation. Climate could be represented by a single variable, temperature: where temperature was higher, tree cover and forest connectivity was lower due to human land use. Temperatures did not help to explain patterns of human development as roads and housing, but did affect forest fragmentation through land use as cropland. This suggests that with climate change, cropland is likely to expand and cause future loss of tree cover in the USGL basin.