V14B-02
Seismic Forecasting of Eruptions at Dormant StratoVolcanoes

Monday, 14 December 2015: 16:15
308 (Moscone South)
Randall A White, USGS, Menlo Park, CA, United States and Volcano disaster Assistance Program
Abstract:
Seismic monitoring data provide important constraints on tracking magmatic ascent and eruption. Based on direct experience with over 25 and review of over 10 additional eruption sequences at 24 volcanoes, we have identified 4 phases of precursory seismicity.

1) Deep (>20 km) low frequency (DLF) earthquakes occur near the base of the crust as magma rises toward crustal reservoirs. This seismicity is the most difficult to observe, owing to generally small magnitudes (M<2.5) the significant depth.

2) Distal volcano-tectonic (DVT) earthquakes occur on tectonic faults from a 2 to 30+ km distance laterally from (not beneath) the eventual eruption site as magma intrudes into and rises out of upper crustal reservoirs to depths of 2-3 km. A survey of 111 eruptions of 83 previously dormant volcanoes, (including all eruptions of VEI >4 since 1955) shows they were all preceded by significant DVT seismicity, usually felt. This DVT seismicity is easily observed owing to magnitudes generally reaching M>3.5. The cumulative DVT energy correlates to the intruding magma volume.

3) Low frequency (LF) earthquakes, LF tremor and contained explosions occur as magma interacts with the shallow hydrothermal system (<2 km depth), while the distal seismicity dies off.4) Shortly after this, repetitive self-similar proximal seismicity may occur and may dominate the seismic records as magma rises to the surface.

We present some examples of this seismic progression to demonstrate that data from a single short-period vertical station are often sufficient to forecast eruption onsets.