B13E-0664
Characterization of Biogeochemical Variability in a Tidal Estuary Using High Resolution Optical Measurements

Monday, 14 December 2015
Poster Hall (Moscone South)
Grace Chang, Craig Jones and Todd Martin, Integral Consulting Inc., Santa Cruz, CA, United States
Abstract:
The Berry’s Creek Study Area (BCSA) is a tidal estuary located in New Jersey. Several chemicals of potential concern (COPCs) are present in the BCSA waterway and marshes, including mercury, methyl mercury, and polychlorinated biphenyls. Concentrations of COPCs and suspended solids in the BCSA vary temporally and spatially due to tidal variability, freshwater flow events, and interaction of marsh, waterway, and sediment bed materials. This system-wide variability confounds evaluation of COPC sources and transport mechanisms when using conventional laboratory-based analysis of discrete water column samples. Therefore, an optically-based biogeochemical monitoring program was conducted using near-continuous measurements of optical properties and an optical-biogeochemical partial least-squares regression model pioneered by B. Bergamaschi (USGS) and colleagues. The objective of the study was to characterize COPC concentration dynamics in the BCSA water column and relate the analysis to sediment bed processes.

Optical-biogeochemical model results indicated that, in general, measured optical properties were sufficient for predicting COPC concentrations to within 10% of the accuracy of laboratory-based analytical measurements. The continuous, high temporal resolution time series of COPC concentrations determined by the optical-biogeochemical model enabled evaluation of the sediment bed dynamics and variability of COPCs in the surface water of the BCSA. Results indicate that tidally-induced resuspension of waterway sediment bed particulates is the primary mechanism for transport of COPCs to surface water. Waterway-marsh tidal exchange shows a net mass flux of particulate COPCs from waterway to marsh, indicating that particulate COPCs are retained and accumulate in the marshes with relatively little net export of dissolved COPCs from the marshes to the waterway.