SA51A-2393
Transionospheric VLF Propagation as an Ionospheric Diagnostic

Friday, 18 December 2015
Poster Hall (Moscone South)
Evan Robert Worthington, Georgia Institute of Technology Main Campus, Atlanta, GA, United States
Abstract:
Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground-based sources, such as VLF transmitters or lightning strokes, are attenuated as they travel through the D-region of the ionosphere, making measurements taken of the VLF energy that has escaped this region useful in estimating the electron density. It has been also been suggested that F-region irregularities may contribute additional attenuation to the VLF signal. Additionally, energy at these frequencies that escapes the ionosphere altogether strongly impacts the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributes to the formation of the slot region.

We present an analysis of measurements captured by the DEMETER satellite over VLF transmitters. During its six-year mission, DEMETER completed hundreds of passes above well-characterized VLF transmitters while recording electric and magnetic field strengths. Statistically significant (daytime and nighttime) seasonal variations were observed in this data set. We compare observations with estimates obtained using a sophisticated full wave model of trans-ionospheric propagation, and discuss the viability of the International Reference Ionosphere in correctly predicting transionospheric VLF energy.