B52A-02
Measuring Complete 3D Vegetation Structure With Airborne Waveform Lidar: A Calibration and Validation With Terrestrial Lidar Derived Voxels

Friday, 18 December 2015: 10:35
2004 (Moscone West)
Steven Hancock1, Karen Anderson1, Mathias Disney2, Kevin J Gaston1 and BESS-F3UES, (1)University of Exeter, Environment and Sustainability Institute, Exeter, United Kingdom, (2)University College London, Geography, London, United Kingdom
Abstract:
Accurate measurements of vegetation are vital to understand habitats and their provision of ecosystem services as well as having applications in satellite calibration, weather modelling and forestry. The majority of humans now live in urban areas and so understanding vegetation structure in these very heterogeneous areas is of importance.

A number of previous studies have used airborne lidar (ALS) to characterise canopy height and canopy cover, but very few have fully characterised 3D vegetation, including understorey. Those that have either relied on leaf-off scans to allow unattenuated measurement of understorey or else did not validate.

A method for creating a detailed voxel map of urban vegetation, in which the surface area of vegetation within a grid of cuboids (1.5m by 1.5m by 25 cm) is defined, from full-waveform ALS is presented. The ALS was processed with deconvolution and attenuation correction methods. The signal processing was calibrated and validated against synthetic waveforms generated from terrestrial laser scanning (TLS) data, taken as “truth”. The TLS data was corrected for partial hits and attenuation using a voxel approach and these steps were validated and found to be accurate. The ALS results were benchmarked against the more common discrete return ALS products (produced automatically by the lidar manufacturer’s algorithms) and Gaussian decomposition of full-waveform ALS.

The true vegetation profile was accurately recreated by deconvolution. Far more detail was captured by the deconvolved waveform than either the discrete return or Gaussian decomposed ALS, particularly detail within the canopy; vital information for understanding habitats. In the paper, we will present the results with a focus on the methodological steps towards generating the voxel model, and the subsequent quantitative calibration and validation of the modelling approach using TLS. We will discuss the implications of the work for complete vegetation canopy descriptions in urban systems and consider broader uses in other landscapes.