PP51B-2287
The Northern Extent of the Southern Hemisphere Westerly Wind Belt since the Last Glacial Maximum Tracked via Sediment Provenance
Abstract:
The Southern Hemisphere Westerlies are known to be important for climate due to their effects on the global carbon cycle and on the global thermohaline circulation. Many proxy records suggest that the strength and position of the Southern Hemisphere westerly winds have changed significantly since the Last Glacial Maximum (LGM) at ~21,000 years BP. However, a recent compilation of all available evidence for Southern Hemisphere westerly wind changes during the Last Glacial Maximum (LGM) led to the conclusion that “their strength and position in colder and warmer climates relative to today remain a wide open question” (Kohfeld et al. (2013) Quaternary Science Reviews, 68). This paper finds that an equatorward displacement of the glacial winds is consistent with observations, but cannot rule out other, competing hypotheses.Using the geochemical characteristics of deep-sea sediments deposited along the Mid-Atlantic Ridge, I test the hypothesis that the LGM Southern Hemisphere Westerlies were displaced northward. In the central South Atlantic, dust can be delivered from South America via the Westerlies, or from Africa via the Trade Winds. The continental sources of South America and Africa have very different geochemical signatures, making it possible to distinguish between eolian transport via the Westerlies vs. the Trade Winds. Any northward shift in the Southern Hemisphere Westerlies would increase the northward extent of a South American provenance in sediments dominated by eolian sources. I will present geochemical provenance data (radiogenic isotope ratios; major and trace element concentrations) in a latitudinal transect of cores along the Mid-Atlantic Ridge that document whether, in fact, such a shift occurred, and put an important constraint on how far north the wind belts shifted during the LGM.