A21G-0235
Evaluating Ambient Concentrations and Local Emissions of Greenhouse Gases (GHGs) in the San Francisco Bay Area of California Using a Comprehensive Fixed-site and Mobile Monitoring Network

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Abhinav Guha, Jonathan P Bower, Philip T Martien, Steven Randall, Abby Young, Henry Hilken and Eric Stevenson, Bay Area Air Quality Management District, San Francisco, CA, United States
Abstract:
The Bay Area Air Quality Management District (hence the Air District) is the greater San Francisco Bay metropolitan region’s chief air quality regulatory agency. Aligning itself with Executive Order S-3-05, the Air District has set a goal to reduce the region’s GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 10-point Climate Action Work Program lays out the agency’s priorities, actions and coordination with regional stakeholders. The Program has three core objectives: (1) to develop a technical and monitoring program to document the region’s GHG sources and related emissions, (2) to implement a policy and rule-based approach to control and regulate GHG emissions, and finally, (3) to utilize local governance, incentives and partnerships to encourage GHG emissions reductions.

As part of the technical program, the Air District has set up a long term, ambient GHG monitoring network at four sites. The first site is located north and upwind of the urban core at Bodega Bay by the Pacific Coast. It mostly receives clean marine inflow and serves as the regional background site. The other three sites are strategically located at regional exit points for Bay Area plumes that presumably contain GHG enhancements from local sources. These stations are at San Martin, located south of the San Jose metropolitan area; at Patterson Pass at the cross section with California’s Central Valley; and at Bethel Island at the mouth of the Sacramento-San Joaquin Delta. At all sites, carbon dioxide (CO2) and methane (CH4) are being measured continuously, along with combustion tracer CO and other air pollutants. The GHG measurements are performed with high precision and fast laser instruments (Picarro Inc). In the longer term, the network will allow the Air District to monitor ambient concentrations of GHGs and thus evaluate the effectiveness of its policy, regulation and enforcement efforts. We present data from the sites in their first few months of operation and demonstrate the efficacy and utility of this monitoring network. We also present our progress on the design and fabrication of a dedicated mobile GHG measurement platform (a research van) equipped with state of the art analyzers capable of measuring isotopic methane (13C – CH4), CH4, CO2 and also nitrous oxide (N2O) in ambient air at fast temporal rates.