SM21A-2493
Wave-Particle Interaction Analyzer for the Pitch Angle Scattering of Electrons by Whistler-mode Chorus Emissions

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Masahiro Kitahara and Yuto Katoh, Tohoku University, Sendai, Japan
Abstract:
Pitch angle scattering of electrons caused by chorus emissions is one of significant wave-particle interactions in the magnetosphere. A number of previous studies treat the pitch angle scattering as a diffusion of distribution function and calculate diffusion coefficients from observed wave spectra. However, in the diffusion model, we cannot evaluate the nonlinearity of the pitch angle scattering, while recent theoretical works and observation results have pointed out the importance of nonlinear effects. A concept of Wave-Particle Interaction Analysis (WPIA) is proposed by Fukuhara et al. (2009). In the frame of the WPIA, we can directly detect wave-particle interactions by calculating the energy exchange between waves and particles. In the present study, in addition to the method to detect the energy exchange, we propose a method to directly detect the pitch angle scattering of resonant particles by calculating G. The G is defined as the accumulation value of a pitch angular component of the Lorentz force acting on each particle. We apply the proposed method to results of the one-dimensional electron hybrid simulation (Katoh and Omura, 2007a, b). By using the wave and particle data obtained at fixed points assumed in the simulation system, we conduct the pseudo-observation in the simulation. In the result of the analysis, we obtain significant values of G for electrons in the kinetic energy and pitch angle ranges satisfying the cyclotron resonance condition. We compare the result of the analysis of G with the temporal variation of both the pitch angle distributions and the wave spectra. While the pitch angle distribution varies by a few percent through interactions, we obtain the statistically significant G. Furthermore, we compare the G with diffusion coefficient D. While the D showed the broadband diffusive scattering, the G values indicated the narrowband strong scattering. We note that in deriving Fokker-Planck equation and diffusion coefficient D, we use the quasi-linear approximation for the Vlasov equation, but by the proposed G values we can evaluate the pitch angle scattering without any approximation of the physical process governing wave-particle interactions. In this study, we discuss the significance of the G values based on the concept of WPIA to evaluate wave-particle interactions in the space plasma.