GC33C-1306
Predcition of Long term Water table Trends in Response to Groundwater Irrigation and Climate Change in an Indian Context

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Indu Thekkemeppilly Sivakumar, Cornell University, Ithaca, NY, United States
Abstract:
Intensified groundwater irrigation is a major factor that contributes to water table decline. This phenomenon has been documented in many parts of the world. This study investigates trends in water table in response to agriculture intensification to meet increasing food demand, water management practices and climate change. A shallow-aquifer model based on the extended Thornthwaite-Mather procedure is used to predict groundwater levels in response to precipitation, evapotranspiration, and groundwater pumping for irrigation. Krishna district in the state of Andhra Pradesh in southern India which has a sub-humid, monsoon climate and Calicut district of Kerala state with a wet tropical monsoon climate have been chosen as sites for this study. The effect of increasing food demand by a growing population is investigated by increasing the number of crops per year from one to three. We consider three climate scenarios and two water management practices in this study. The three climate scenarios are the ones those envisaged by the Intergovernmental Panel for Climate Change (IPCC). The two water management practices considered are the traditional flooded agriculture and the system of rice intensification method which does not use total flooding. The results show that single crop agriculture in Krishna district is sustainable for all climate scenarios and water management practices with a maximum depth to water table around 6 - 7 m at the end of dry season and the water table recovers to the surface most of the time. Increasing crop production with two or three crops per year with groundwater irrigation is unsustainable with the water table levels dropping potentially to 200 – 1000 m at the end of 21st century. We found that climate change and better irrigation water management practices affected ground water levels only minimally compared to the growing more than one crop per year. Our study leads to the conclusion that ground water irrigated rice can only be sustainable when crop evaporation is less then precipitation and in order to meet increasing food demands the rice yield per unit water should be improved.