A41F-0126
Toward an improved understanding of MCS propagation

Thursday, 17 December 2015
Poster Hall (Moscone South)
John M. Peters, Colorado State University, Department of Atmospheric Science, Fort Collins, CO, United States
Abstract:
Processes that drive the propagation of elevated mesoscale convective systems (MCSs) have been the topic of a growing body of recent research. Elevated MCSs are responsible for a large percentage of warm season rainfall in the continental United States, and produce flash floods more frequently than other modes of convection. A comprehensive understanding of the dynamics of MCS propagation is important, since propagation sometimes opposes other environmental forces that influence MCS motion. This leads to nearly stationary MCSs that produce prolific local rainfall totals.

The ingredients-based Propagation index (IPI) is introduced in this research. IPI is defined as the normalized product of horizontal warm thermal advection (a proxy for lifting), convective available potential energy (CAPE), and relative humidity. Horizontal plots of IPI are useful in identifying regions of probable convective initiation, including the intersections between potentially unstable flow and outflow boundaries, regions of mesoscale lift along the nose of the low-level jet, convectively induced gravity waves, and frontogenesis. Effective inflow-layer shear vectors are also introduced, and found to be useful for scenarios where IPI does yield predictive insight, such as the traditional “RKW” scenario where the forward propagation of an MCS is driven by thunderstorm outflow.

It is argued that horizontal maps of IPI and EILS vectors will contribute significantly to short-term (e.g. 1-2 hr) predictions of the movement of MCSs, and to the subsequent assessment of their potential for flash flood production.