ED33D-0975
Mapping Precambrian Basement Fabric with Magnetic Data in the Karonga Basin Area and its Control on the Development of the Malawi Rift.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Tiara Johnson, Sam Dawson, Courtney D Hull, Bryan Clappe and Estella A Atekwana, Oklahoma State University Main Campus, Stillwater, OK, United States
Abstract:
The Malawi Rift forms the southern termination of the western branch of the East African Rift System. It is suggested that it propagates from the Rungwe Volcanic Province in the north for ~700 km into Mozambique in the south. The northern portion of the Malawi Rift is dominated by the Mesoproterozoic basement rocks of the Ubendian-Usagaran belts to the north and west and the Irumide Belt in the south. The Mugese shear zone (MSZ) forms the boundary between the Ubendian-Usagaran and Irumide Belts. We used magnetic data to determine the relationship between the geology of the nascent Malawi Rift and the strong magnetic fabric observed in the Mugese shear zone from aeromagnetic maps. We integrated the aeromagnetic data with ground magnetic data acquired along two W-E transects using a cesium vapor magnetometer at a nominal station spacing of 500 m. We also acquired kinematic data (strike and dip) on exposed basement geology and Karoo sediments. Both transects extend from the uplifted basement areas cutting across the MSZ into the rift floor sediments. Our results show that the MSZ is characterized by a prominent WNW-ESE magnetic anomaly that is parallel to the basement fabric north of the town of Karonga but changes orientation to NNW-SSE south of Karonga. This shear zone is composed of gneisses in amphibolite to granulite facies that are steeply dipping (50-80°) to the west. The strong magnetization and magnetic lineation of the MSZ results from alternating light and dark colored gneissic bands. This magnetization is strongest in unweathered basement rocks and lowest in weathered basement rocks and Karoo sediments. The orientation of the strong magnetic fabric of the Mugese shear zone may play an important role on the accommodation of strain within the rift basin. Detailed mapping of the magnetic fabric can improve our understanding of the formation of faults in the nascent Malawi Rift.