A11K-0220
Heterogeneous Nitration of Tyrosine by NO3 and N2O5: Rates, Mechanisms and Product Yields
Monday, 14 December 2015
Poster Hall (Moscone South)
Ranajit K Talukdar1, Bartlomiej Witkowski1,2, James B Burkholder3 and James M Roberts1, (1)NOAA Boulder, Boulder, CO, United States, (2)University of Warsaw, Warszawa, Poland, (3)NOAA Camp Springs, Camp Springs, MD, United States
Abstract:
Nitration of protein-bound tyrosine has been identified as a casual connection between air pollution and human health. Tyrosine is a common amino acid, 4-hydroxyphenylalanine, HO-C6H4-CH2-CH(NH2)-C(O)OH), and is present in many atmospheric bio-aerosols. Nitration of the aromatic units of protein molecules in polluted air enhances their allergenicity. The mechanism of heterogeneous nitration process of bio-aerosols by common nitrating agents in the atmosphere, O3/NO2, NO3, N2O5 is not well understood. This chemistry is thought to proceed via reactions with O3 and NO2 on particle surfaces, through mechanisms that are still uncertain. The possible role of higher nitrogen oxides also remains uncertain, partly due to a lack of measurements of fundamental chemical and physical parameters. In this work, we undertook measurements of reactive uptake of NO3, N2O5, as a function of relative humidity and temperature in a tyrosine coated flow tube reactor with chemical ionization mass spectrometric (CIMS) detection. Uptake coefficients on tyrosine coated flow tube were small under low relative humidity but were enhanced by an order of magnitude in the presence of high relative humidity, particularly for N2O5. The measured uptake coefficients were mostly due to reaction with water adsorbed on the surface of the flow tube. Only ~10% of the reactive uptake could be attributed to reaction with tyrosine. Following uptake, the contents of the flow tube were extracted, and analyzed using electrospray ionization - mass spectrometer (ESI-MS) to identify and quantify the products of the nitration reaction. The only organic reaction product detected was 3-nitro-tyrosine (3-NT). The measured uptake coefficients, mechanism of the title reactions and the possible atmospheric implications of these findings will be discussed.