S13A-2797
The BOrborema Deep Electromagnetic and Seismic (BODES) Experiment

Monday, 14 December 2015
Poster Hall (Moscone South)
Jordi Julià1, Xavier Garcia2, Walter Eugenio Medeiros3 and Aderson Farias do Nascimento1, (1)Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil, (2)ICM-CSIC, Barcelona, Spain, (3)UFRN Federal University of Rio Grande do Norte, Natal, Brazil
Abstract:
The Borborema Province of NE Brazil is a large Precambrian domain of the Brazilian shield located in the Northeasternmost corner of South America. It is bounded by the Parnaíba basin to the West and by the São Francisco craton to the South. Its structuration in the Precambrian has been related to compressional processes during the Brasiliano-Pan African orogeny (600-550 Ma). In the Mesozoic, extensional stresses eventually leading to continental breakup, left a number of aborted rift basins within the Province. After continental breakup, the evolution of the Province was marked by episodes of uplift, which might have been coeval with episodes of Cenozoic volcanism. The most prominent expression of those uplift processes is the Borborema Plateau, an elliptically shaped topographic feature in the eastern half of the Province with maximum elevations of ~1200 m. The origin of uplift in the Plateau has been the focus of a number of multi-institutional and multi-disciplinary studies in the past few years, which have imaged the deep structure of the eastern Province with unprecedented detail. The origin of uplift in the western Province, which includes a superb example of basin inversion demonstrated by the ~1000 km elevations of the Chapada do Araripe, however, has been seldom investigated. With the goal of investigating the deep structure of the western Province, a temporary network of 10 collocated seismic and magnetotelluric stations was deployed in the region. The collocated stations were arranged in an approximately NS direction, with an interspation spacing of ~70 km and spanning a total length of ~600 km. The seismic stations consisted of broadband sensors (RefTek 151B-120 "Observer") sampling at 100 Hz and were deployed in January 2015; the MT stations consisted of long-period magnetotelluric (LEMI) systems, sampling at 1 Hz and 4 Hz, and were deployed in April 2015 for a period of ~2 weeks. Preliminary results based on teleseismic P-wave receiver functions suggest that the crust thickens towards the South, from 33 km in the Ceará domain to 44 km in the São Francisco craton. Preliminary analyis of MT data suggests a heterogeneous lithosphere, with marked changes in electrical properties around the Chapada do Araripe and a marked resistive structure towards the South, where the profile enters the São Francisco craton.