A13D-0363
Contrail microphysical properties and radiative forcing over the Northern Hemisphere derived using MODIS infrared observations

Monday, 14 December 2015
Poster Hall (Moscone South)
Sarah Thomas Bedka, Science Systems and Applications, Inc., Lanham, MD, United States
Abstract:
One of the primary ways that air traffic affects the Earth’s radiation budget is through the formation of contrails. In order to quantify the radiative impact of contrails, one must assess their macro and microphysical properties (e.g. contrail temperature, optical depth and effective particle size) as well as the characteristics of the environment in which they occur (e.g. background radiation field and cloud properties). In-situ measurements of contrail microphysical properties are limited, and hence the retrieval of such properties from remotely sensed satellite data is useful. This paper details the ongoing progress being made to retrieve contrail properties and calculate the contrail radiative forcing from 2 years of MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra data. Contrail microphysical properties from the seasonal months (January, April, July, October) of 2006 and 2012 are derived using an infrared-only heritage algorithm developed at NASA Langley for the Clouds and the Earth’s Radiant Energy System (CERES) program. Results are subset by day/night, although the same retrieval algorithm will be used for all granules. Contrail properties and background cloud properties are then used as input into the Fu-Liou radiative transfer model to compute the overall contrail radiative forcing.