H43G-1617
Mechanisms of soil aggregate failure by rapid increase in internal gas pressure during low-intensity burns

Thursday, 17 December 2015
Poster Hall (Moscone South)
Mathew Jian1, Teamrat A Ghezzehei1 and Markus Berli2, (1)University of California Merced, Merced, CA, United States, (2)Desert Research Institute, Las Vegas, NV, United States
Abstract:
The incidence of low-intensity natural and managed fire is on the rise, especially in the arid and semi-arid parts of the U.S. Southwest. Yet, there is little understanding of the ramifications of such burns on soil characteristics and their associated ecological processes. In particular, effects of low-intensity fires on soil structure have generally been ignored because such fires have little effect on soil organic matter. Recently, we showed that soil aggregates subjected to rapid low-intensity heating (<200°C) deteriorate more than aggregates subjected to the same temperature but at slow heating rate. We hypothesized that rapid heating rate results in high internal gas pressure due to vaporization of pore water that exerts disruptive mechanical stress that exceeds the internal strength of the aggregates. Here, we present in situ measurements of gas pressure of aggregates subjected to low-intensity burns. We compared a wide range of aggregate wetness and temperature levels. In addition, we report direct visualization of aggregate breakdown during rapid gas expansion using dynamic environment scanning electron microscopy. Our observation to date show that the interior gas pressure of moist aggregates rise rapidly to 1.5-4kPa, whereas the pressure inside dry aggregates remain unchanged during rapid heating. These observations show that weakly aggregated soils of arid and semi-arid regions are very vulnerable to low-intensity burns.