V31A-3009
Compositional Variations of Primary Basalts in the Poison Lake Chain, Lassen Region of Northern California

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Gene Theodore Lewis, California State University Chico, Geological & Environmental Science, Chico, CA, United States, Rachel Teasdale, California State University Chico, Chico, CA, United States and Jennifer M Wenner, University of Wisconsin Oshkosh, Oshkosh, WI, United States
Abstract:
Multiple compositional mantle domains are represented by primitive basalts of the Poison Lake chain (PLC), located east of the Lassen Volcanic Center in the southern Cascades and on the western margin of the Basin and Range. Four of the nine compositional groups of PLC basalts include primary basalt samples that represent distinct mantle compositions from which other samples are likely derived. Primitive basalts from two of the groups, the old railroad grade (bg; 102.1 +/- 11.4 ka) and the basalts of Poison Butte (bp; 105.0 +/- 6.0 ka), spatially and chronologically overlap. Both groups are primitive basalts that have phenocrysts of olivine, plagioclase and clinopyroxene. However, bg has larger, more euhedral olivine while bp has fewer, smaller, anhedral and embayed olivine phenocrysts. Compositionally, bg has higher whole-rock MgO (9.2-12.2 %) and Ni (189-238 ppm) and lower Zr (57-89 ppm) than bp (MgO = 5.3-7.8 %; Ni = 35-89 ppm; Zr = 98-153 ppm), suggesting bp has undergone more fractionation than bg. MELTS and REE models predict that the most primitive unit of bg (bg3) could have fractionated to produce the other three bg units. Similarly, MELTS and REE models suggest that four of the six units of bp can be derived by fractional crystallization from bg3. However, those models require that bg3 would need to fractionate between 40-50% in order to generate the bp compositions. Unreasonably high % fractionation suggests that the relationship between bg and bp groups is more complex than simple fractionation allows, but their similar Cr spinel compositions (bg Cr# =32.9-50.9 and bp Cr# = 44.0-56.3) suggest bg and bp are likely derived from a common mantle source. Additional petrogenetic modeling and isotope analyses will help clarify the relationship between PLC primitive basalt groups. The combination of small scale mantle heterogeneities along with detailed examination of magma processing are only recognized in the PLC with high density sampling, which may be useful for recognizing similar petrogenetic processes in other regions of the Cascades arc.