GC43C-1223
Detecting Emergence of Acidification and Warming as Stressors for Coral Reef Regions using Earth System Models
Thursday, 17 December 2015
Poster Hall (Moscone South)
Alicia Taylor Menendez, Princeton Environmental Institute, Princeton, NJ, United States
Abstract:
Coral reef ecosystems rely on complex interactions between biological, biogeochemical, and physical processes to ensure their survival and resilience. However, both human interaction and anthropogenic climate change have negatively impacted the prosperity of these regions, resulting in a crucial need to understand and predict the future of important biogeochemical and physical stressors. Contemporary changes to these relationships and environmental conditions in coral reef ecosystems are a mixture of anthropogenic contributions and natural variability (e.g. ENSO) of the climate system. To better quantify the uncertainty in future projections, it is exceedingly necessary to differentiate between these two contributors. In this study we look at acidification and warming stressors in the Galapagos, Coral Triangle, and Hawaiian islands regions. We use a suite of hindcast simulations (a 30-member large initial condition ensemble) done with an Earth Systems Model (GFDL-ESM2M) in order quantify the degree to which natural variability alters the emergence time-scales of anthropogenically-induced changes to ecosystem drivers such as pH, ΩArag, and SST. A comparison of output from a suit of CMIP5 models will be used to evaluate model uncertainty for the same regions. Simulated trends and variability in these ecosystem drivers were then compared to observed trends over the three Pacific regions. Evidently the models and observed trends proved invaluable for testing the hypothesis addressing the presence of a temporal hierarchy between emergence, defined by a signal-to-noise ratio, of acidification stressors and temperature as a stressor. Furthermore, challenges in deconvolving anthropogenic and natural contributions to stressor trends will be discussed for each of the three sites.