AE13A-08
Observations of electrical discharges during eruptions of Sakurajima volcano

Monday, 14 December 2015: 15:25
3001 (Moscone West)
Harald E Edens, New Mexico Tech, Langmuir Laboratory, Socorro, NM, United States
Abstract:
In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions.

Prior studies of volcanic lightning have shown that there are several types of electrical discharges that can occur in volcanic eruption clouds. One of these is referred to as continuous RF, which manifests itself as a continual production of VHF emissions that typically last several seconds to a minute during the initial, active phase of an eruption. Its nature and origins are not well understood. Another type of discharge are small, discrete lightning flashes, which start occurring later on within the eruption cloud and are similar to atmospheric lightning.

During the 2015 field program we studied the characteristics of continuous RF and discrete flashes during volcanic eruptions of Sakurajima volcano using a comprehensive set of instrumentation. This included a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras.

We present correlated LMA, waveform, photographs and video recordings of continuous RF and discrete volcanic lightning flashes. We discuss the nature of continuous RF and its possible origins, and how it compares to VHF emissions from regular, discrete flashes. We also discuss the polarity of leaders of discrete flashes and the general time evolution of the charge structure in eruption clouds.