H14D-08
Sorption, Photodegradation, and Chemical Transformation of Naproxen and Ibuprofen in Soils and Water

Monday, 14 December 2015: 17:45
3016 (Moscone West)
Vijay M Vulava1, Wendy C Cory1, Virginia Murphey1,2 and Candice Ulmer1,3, (1)College of Charleston, Charleston, SC, United States, (2)Schlumberger Houston, Houston, TX, United States, (3)University of Florida, Chemistry, Gainesville, FL, United States
Abstract:
Trace levels of pharmaceutically active compounds (PhACs) are increasingly being found in municipal drinking water and natural streams around the world. PhACs enter natural water systems after passing through wastewater treatment plants that have proven to be relatively inefficient at removing them. Once they are released into the environment, they can undergo (1) soil sorption, (2) photodegradation, and/or (3) chemical transformation into structurally similar compounds. The overarching goal of this study is to understand the geochemical fate of common PhACs in the environment. Here we report on our studies with naproxen (NAP) and ibuprofen (IBP) in soils and water. Both compounds are complex nonpolar (aromatic) organic molecules with polar (carboxylic acid) functional groups. The carboxylic functional groups are likely to be deprotonated at environmentally relevant pHs (~4-8).

Sorption studies of both compounds were conducted in clean and relatively acidic (soil pH ~4.5-6.5) natural soils that contained varying levels of organic matter (OM), clay minerals, and Fe oxides. OM was observed to play an important role in each of the above three processes. Sorption was observed to be stronger and nonlinear in higher OM soils, while weaker but still significant in lower OM, higher clay soils; the amphiphilic nature of NAP and IBP combined with the complex charged and nonpolar surfaces available in the soil was observed to control the sorption behavior. Both NAP and IBP underwent rapid photodegradation in aqueous suspensions when exposed to simulated sunlight. The degradation rates were observed to change in the presence of humic acid or fulvic acid. During sorption and photodegradation experiments, common transformation products were observed for both NAP and IBP. The transformation products produced were indicative of chemical transformation and not biological factors. Concentrations of the transformation products were significantly higher in the photoexposed aqueous suspensions compared to that formed in soil solutions. This study also helped in understanding the important role OM plays in geochemical fate of PhACs. The transformation products identified here are known to have higher ecotoxicity than the parent PhACs.