H13L-1760
Factors affecting temporal and spatial variations of Arsenic (III) and (V) in the geothermally impacted Jemez river, NM.

Monday, 14 December 2015
Poster Hall (Moscone South)
Lina Hansson, Stockholm University, Stockholm, Sweden
Abstract:
Arsenic (As) in surface waters and groundwater is of global concern due to its potential negative impact on human health and eco systems. Due to the high leaching capacity of hot waters, geothermal waters in areas with As-rich bedrock, often contain high concentrations of As. This water can reach the surface through fractures and cracks that manifest through diffuse seeps and hot springs. The Soda Dam area in the Jemez Mountains of northwestern NM, with frequent hot springs and seeps, has long been of interest due to the hot spring's high discharge (1500L/s) of geothermal waters into the Jemez River. Although the species of As highly controls its mobility and toxicity, previous studies have focused exclusively on the total amounts of As in the waters, while little is known about the species occurring along the river. We collected water and sediment from 14 sites along the Jemez river to study factors governing spatial and temporal variations of As in hot springs and river water; the interrelationship between As(III) and As(V) and to calculate mass flows during the summer monsoon months of 2015. We found that As(V) is the dominant species along the river stretch of interest except for in the hot springs. As(III) occurs at all sites, and the fraction of total As(III) varies both on a spatial and temporal scale, ranging between 1–7 % upstream of Soda Dam, and 12 - 21 % below it. We also found that hot spring water in the beginning of the southwest monsoon season only contains As(III), but further into the season explicitly As(V), possibly due to a heavy rainfall occurring two days before sampling. The fraction of As(III) correlates well with alkalinity (R2 =0.98-0.59) and temperature (R2 = 0.86-0.46) although differently at different sampling occasions. Since As(III) is generally more toxic and mobile in water than As(V), our results emphasizes that risks associated with As may change over the season due to season-related changes in As speciation.