C21E-06
Effects of a Ground Source Heat Pump in Discontinuous Permafrost
Tuesday, 15 December 2015: 09:15
3007 (Moscone West)
Rorik Peterson1, Robbin Garber-Slaght1 and Ronald P Daanen2, (1)University of Alaska Fairbanks, Fairbanks, AK, United States, (2)DGGS, Fairbanks, AK, United States
Abstract:
A ground source heat pump (GSHP) was installed in a discontinuous permafrost region of Fairbanks Alaska in 2013 with the primary aim of determining the effect of different ground cover options on the long-term subterranean temperature regime. Three different surface treatments were applied to separate loops of the GSHP; grass, sand, and gravel, and temperature monitoring was established at several depths above and below the heat sink loops. The GSHP has been actively utilized to supplement the heat in a hydronic heating system of a neighboring 5000 ft
2 research facility. The ground immediately surrounding the GSHP was not permafrost when initially installed.
Numerical modeling simulations were used to predict the long-term ground temperature regime surrounding the GSHP loops, and results indicate that permafrost would begin to form after the first year. A pseudo-steady state temperature regime would establish in approximately 8 years with a yearly fluctuation of -14°C to -2°C. Simulations also indicate that permafrost could be prevented with a 15 W/m recharge during the summer, such as from a solar thermal system. The ground surface treatments have negligible effect on the ground temperature below 1 meter and therefore have no long-term effect on the active region the GSHP.
Data collected from thermistors in the two years since installation indicate that permafrost has not yet been established, although the ground is now becoming seasonally frozen due to the GSHP energy removal. Yearly average temperatures are declining, and extrapolation indicates that permafrost will establish in future years. The GSHP coefficient of performance (COP) was initially 3.6 and is declining with the decreasing ground temperatures. Economic modeling indicates that the system may become uneconomical in future years, although volatile energy costs have a substantial effect of the prediction.