PP23A-2278
Holocene primary productivity and the atmosphere/ocean linkage in the Gulf of Alaska

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Jason A Addison, USGS, Menlo Park, CA, United States, Bruce Finney, Idaho State University, Pocatello, ID, United States, Lesleigh Anderson, USGS Colorado Water Science Center Denver, Denver, CO, United States, John Arthur Barron, USGS Western Regional Offices Menlo Park, Menlo Park, CA, United States, Sarah M Hayes, University of Alaska Fairbanks, Fairbanks, AK, United States, Maciej Sliwinski, University of Wisconsin Madison, WiscSIMS, Dept. of Geoscience, Madison, WI, United States and Alan C Mix, Oregon State University, Corvallis, OR, United States
Abstract:
Recent work in the temperate fjords of the Gulf of Alaska, located in the subarctic northeast Pacific Ocean, has demonstrated a positive link between modern atmosphere/ocean dynamics and accumulation of biogenic sediments during the last 100 years, where intensified Aleutian Low atmospheric pressure cell regimes correspond to peaks in export primary productivity (Addison et al., 2013). Here, this work is extended by examining the last 7500 years of biogenic sedimentation from marine sediment core EW0408-33JC (57.16°N, 135.36°W, 144 m water depth), which is constrained by 17 age-control points spaced every ~500 years. We use bromine (Br) intensities measured by core-scanning XRF with a 2-mm sampling resolution as a geochemical proxy for past primary productivity. These Br intensities are calibrated to organic Br concentrations using a combination of quantitative WD-XRF methods and synchrotron-radiation Br speciation studies, with cross-verification provided by low-resolution analyses of other productivity proxies, including biogenic silica (opal), total organic carbon (TOC), and organic matter δ13C ratios. Our findings indicate distinct centennial-to-millennial changes, with positive productivity excursions between 7500-7000, 6500-6000, 5000-3500, 2500-1500, and 1000-500 INTCAL13 yr BP. We compare the timing of these excursions against a compilation of marine and terrestrial paleoclimate records sensitive to forcing by the Aleutian Low to determine if the positive relationship between atmosphere/ocean dynamics and marine primary productivity has remained consistent over the last 7500 years. Other potential forcing mechanisms (e.g., solar insolation, irradiance) are also considered.

Reference: Addison, J.A., Finney, B., Jaeger, J., Stoner, J., Norris, R., & Hangsterfer, A., 2013, Integrating satellite observations and modern climate measurements with the recent sedimentary record: an example from Southeast Alaska. JGR-Oceans, v. 118, 18 pgs.