B11D-0472
Microbial Community Response to Carbon Substrate Amendment in Mercury Impacted Sediments: Implications on Microbial Methylation of Mercury.

Monday, 14 December 2015
Poster Hall (Moscone South)
Dwayne A Elias1, Anil C Somenahally2, James G Moberly3, Richard A Hurt Jr.1, Steven D Brown1, Mircea Podar1, Anthony V Palumbo4 and Cynthia C Gilmour5, (1)Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States, (2)Texas Agrilife Research, Vernon, TX, United States, (3)University of Idaho, Moscow, ID, United States, (4)Oak Ridge National Laboratory, Oak Ridge, TN, United States, (5)Smithsonian Institution, Smithsonian Environmental Research Center, Edgewater, MD, United States
Abstract:
Methylmercury (MeHg) is a neurotoxic and bio-accumulative product of the microbial methylation of inorganic mercury (Hg(II)). Methylating organisms are now known to exist in almost all anaerobic niches including fermentation, Fe(III)- and sulfate- reduction as well as methanogenesis. The study objective was to determine the effect of different carbon sources on the microbial community and methylating populations in particular along a Hg contaminated creek. Sediment cores from upstream and downstream at the Hg contaminated East Fork Poplar Creek (EFPC), Oak Ridge TN, and a background site were sectioned by depth, and Hg-methylation potential (HgMP) assays were performed using stable isotope spikes. Sediments from the lowest depth possessed the highest in-situ activity. Replicate samples were amended with different carbon substrates (cellulose, acetate, propionate, lactate, ethanol and methanol), spiked with stable isotopes for HgMP assays and incubated for 24hrs. Sequencing of the 16S rRNA gene was performed to determine alterations in Bacterial and Archaeal population dynamics. Additionally, bioinformatics and our new qualitative and quantitative hgcAB primers were utilized to determine microbial community structure alterations and correlate organism and gene abundance with altered MeHg generation.

HgMP was significantly reduced in cellulose amended sediments while acetate and propionate slightly decreased HgMP in both sites. Methanol, ethanol and lactate increased the HgMP in EFPC downstream while cellulose amendment significantly decreased the Proteobacteria, and the Firmicutes increased but none are currently known to produce MeHg. Geobacter bemidjiensis in particular significantly decreased in cellulose amended sediments in all three sites from being predominant in-situ. This suggests that in EFPC downstream and background sites, the prevalent Hg-methyaltors might be Deltaprotebacteria, since upstream, cellulose amendment did not reduce HgMP even though relative composition of Deltaproteobacteria decreased significantly. Hence the phylogenetic distribution of Hg-methylating bacteria upstream may be much broader. Most Archaea belonged to either Euryarchaeota or Crenarchaeota, but there were no consistent trends with specific groups among the treatments.