H21J-1537
Impact of climate and vegetation type on evapotranspiration from green roofs

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Maria Eloisa Sia, University of Western Ontario, London, ON, Canada
Abstract:
Green roofs are an increasingly popular low impact development tool used to mitigate the adverse effects of urbanization and the loss of vegetated spaces. The benefits of green roofs include reducing stormwater volume and peak flows, reducing building energy loads, and mitigating the urban heat island effect. Evapotranspiration (ET) is a key process fundamental to hydrologic and thermal performance of green roofs. For example, ET governs the water storage volume available in the soil medium and thus the ability of the green roof to retain and attenuate stormwater. Green roof design considerations such as soil medium depth and plant type impact ET rates. Additionally, climate has a strong impact on ET rates. To date, the influence between climate and green roof design factors (e.g. vegetation type and soil medium depth) on ET rates have not been well quantified. We performed a field study to evaluate the impact of climate, vegetation type, and soil medium depth on ET rates from extensive modular green roofs over prolonged drying periods. Three Canadian cities with distinct climates were chosen as field sites: London, ON, Calgary, AB, and Halifax, NS. At each site, daily module weights were recorded from May to August in 2013 and 2014 for approximately 40 green roof modules. These modules were divided into four vegetation treatments (three single species and one mixed species), and each treatment was divided into two groups of soil medium depth (10 cm or 15 cm). Daily ET rates and seasonal moisture loss were calculated and compared for the modules to determine which treatment provided the highest ET rates. The root depth profile, leaf area index, and stomatal resistance were also measured. On average, daily ET rates among the vegetation treatments did not vary greatly, however, observations on plant survival indicate which plant types are best suited for each site. In all three sites, mixed species in 15 cm of soil medium had higher seasonal moisture loss compared to similar depth modules with individual species. Furthermore, the depth of the root structure was found to influence the seasonal moisture loss among the vegetation treatments. These data provide insight on the vegetation type and soil medium depth best suited for different climates.