V43A-3092
Pressure Wave Propagation along the Décollement of the Nankai Accretionary Wedge: Implications for Aseismic Slip Events

Thursday, 17 December 2015
Poster Hall (Moscone South)
Ajit Joshi and Martin S Appold, University of Missouri Columbia, Department of Geological Sciences, Columbia, MO, United States
Abstract:
Seismic and hydrologic observations of the Nankai subduction zone made by the Ocean Drilling Program suggest that pore fluid pressures within the accretionary wedge décollement are highly overpressured to near lithostatic values below depths of 2 km beneath the sea floor as a result of sediment diagenesis and dehydration of the subducting oceanic plate. This overpressured zone is also observed to discharge pulses of high fluid pressure that migrate up-dip along the décollement at rates of 1’s of km/day. These high pressure pulses along the décollement may cause large enough reductions in the local effective stress to account for aseismic slip events that have been found to propagate also at rates of 1’s of km/day. Because elevated fluid pressure and correspondingly decreased effective stress can lead to a dilation of porosity, the pressure waves may become effective agents of fluid transport that can travel more quickly than fluids flowing in the background Darcian flow regime. The purpose of the present study was to seek theoretical confirmation that pressure waves are able to travel quickly enough to account for the seismic and hydrological observations documented. This confirmation was sought through a transient one-dimensional numerical solution to the differential fluid mass conservation equation for an elastic porous medium.

Results of the numerical simulations show that when overpressures at depths greater than 2 km in the décollement exceed lithostatic pressure by at least 3%, pressure waves are formed that migrate up-dip at rates fast enough to account for aseismic slip over a broad range of geologic conditions. Pressure waves spawned from these depths in the décollement may travel fast enough to account for aseismic slip when overpressures there are as low as 99% of lithostatic pressure, but require low specific storage of 3×10−6 m−1, high sensitivity of permeability to effective stress, low permeability no higher than about 10−21 m2 at depths below 2 km in the décollement, and an accurate accounting of the decrease in fluid viscosity with increasing depth. Thus, pressure waves could account for aseismic slip in the Nankai accretionary wedge if conditions were near the limits of geologically reasonable ranges.