T31A-2856
Boundary Element Modeling of Fault Cored Anticlines and Associated Blind Thrust Faults in Central California
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Molly Kay Williams, Indiana University Bloomington, Department of Geological Sciences, Bloomington, IN, United States and Kaj M Johnson, Indiana University, Bloomington, IN, United States
Abstract:
Recent literature investigating active folding indicates that crustal-scale anticlines grow primarily through slip on underlying faults. Such studies use the geometry and uplift rates of active fault-related folds to infer fault slip rate based upon an assumed kinematic relationship between fault slip and particle motion in the surrounding crust. Our method uses a boundary element model of flexural slip folding called BEAFS (
Boundary Element Analysis of Flexural Slip), allowing us to focus on the mechanics of deformation.In many cases, the shallow geometry (<5km) of natural folds are well constrained by subsurface data. However, the geometry of the causative blind thrust faults are often not well imaged. By comparing our numerical simulations with published subsurface and surface data on naturally occurring active folds, we can determine fault geometry and the extent to which various mechanisms are controlling fold evolution. For this work, we present our model results for the underlying faults at Kettleman Hills South Dome, Kettleman Hills North Dome, and Coalinga Anticline in the San Joaquin Valley of Central California. The rupturing of blind thrust faults associated with actively growing anticlines such as these pose a significant global seismic hazard. Our study area is of particular interest as it is the site of two such recent earthquakes—a Mw=6.5 earthquake in 1983 at Coalinga and a Mw=6.1 in 1985 at Kettleman Hills North Dome. Thus, we can compare the published earthquake data from these events to the parameters predicted by our model results from BEAFS.