B11J-0582
Mechanisms of Propidium Monoazide Inhibition of Polymerase Chain Reaction and implications for Propidium Monoazide Applications

Monday, 14 December 2015
Poster Hall (Moscone South)
Christine Mangshing Lee, NASA Headquarters, Washington, DC, United States
Abstract:
PMA-qPCR is a laboratory technique that can be used to identify viable microbes by employing the use of propidium monoazide (PMA), a DNA-intercalating dye, and quantitative polymerase chain reaction (qPCR). The current model of PMA-qPCR operates under the assumption that PMA is only capable of entering membrane-compromised cells, where it irreversibly cross-links to DNA and makes it unavailable for amplification via qPCR. However, the exact mechanism behind PMA’s entry into the cell and its interaction with genetic material is not well understood. To better understand PMA’s capabilities, we have examined the effect PMA has on enzyme binding and processivity using endonucleases and exonucleases. Our results suggest that the current model behind PMA-qPCR inhibition is incomplete, in that rather than precipitating the entirety of the DNA, PMA also inhibits enzyme binding and/or processivity in soluble DNA. These results have important implications for studying the viable community of microorganisms in various applications, such as environmental monitoring, planetary protection and bioburden assessment, and biohazard detection.