V21A-3019
Interplay between tectonic and volcanic processes along the East Pacific Rise, 16°N

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Morgane Le Saout, Monterey Bay Aquarium Research Institute, Watsonville, CA, United States, Remy Thibaud, Ecole Navale, Brest, France and Pascal Gente, Université de Bretagne Occidentale, Brest, France
Abstract:
The East-Pacific Rise (EPR) is a fast spreading ridge. Between 15°22'N and 16°15'N the spreading rate is 87 mm/year. This segment is the most inflated of the EPR due to its interaction with the Mathematician hotspot. The French PARISUB ("Panache Ridge Submersible") cruise in 2010 acquired high-resolution geophysical data using the Autonomous Underwater Vehicle (AUV) Aster-X and the manned submersible Nautile (Ifremer). The goal was to investigate in detail the magmatic and tectonic processes at the intersection between the hotspot and the ridge.

We investigate tectonic and volcanic processes using high-resolution data along the 16°N segment of the EPR. Near bottom bathymetric data (1 meter grid spacing) are improved by photos, videos and human observations from submersible survey. Data are used : 1/ to characterize in detail tectonic feature (faults and fissures) geometries (e.g., dip and vertical throw), 2/ to distinguish between different lava flows (pillow, lobate and sheet flows) and to locate lava sources defined in particular by flow front orientations and lava channels.

In a context of an unusual spreading segment under influence of a hot spot, these data allow us to evaluate how small-scale volcanic and tectonic processes near ASTs, interact for nucleation and evolution of faulting patterns, and affect tectonic stain evaluation. The distinction between eruptive and non-eruptive tectonic features allows to estimate the distribution of tectonic feature affected by magnetic overprinting. We propose two origins for nucleation and evolution of faults around the AST, and define relations between faults, lava flows and seismic layer 2A.