PP31E-04
The evolution of Phanerozoic seawater – Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

Wednesday, 16 December 2015: 08:45
2010 (Moscone West)
Ethan L Grossman1, Gregory A Henkes2, Benjamin H Passey3, Brock Shenton4, Thomas E. Yancey1 and Alberto Perez-Huerta5, (1)Texas A & M University, Department of Geology and Geophysics, College Station, TX, United States, (2)Harvard University, Department of Earth and Planetary Sciences, Cambridge, MA, United States, (3)Johns Hopkins University, Baltimore, MD, United States, (4)ExxonMobil Houston, Exploration Company, Houston, TX, United States, (5)University of Alabama, Department of Geological Sciences, Tuscaloosa, AL, United States
Abstract:
Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an “ice-free” world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and δ18O values into the oxygen isotopic paleotemperature equation yields a mean seawater δ18O of -0.7 ± 1.4‰ for the Phanerozoic. Collectively, these findings argue for extremely warm early Paleozoic oceans, and constant seawater δ18O throughout the last ~450 million years.