GC13D-1190
Optimal Estimation of Phenological Crop Model Parameters for Rice (Oryza sativa)

Monday, 14 December 2015
Poster Hall (Moscone South)
Hussain Sharifi, University of California Davis, Davis, CA, United States
Abstract:
Crop phenology models are important components of crop growth models. In the case of phenology models, generally only a few parameters are calibrated and default cardinal temperatures are used which can lead to a temperature-dependent systematic phenology prediction error. Our objective was to evaluate different optimization approaches in the Oryza2000 and CERES-Rice phenology sub-models to assess the importance of optimizing cardinal temperatures on model performance and systematic error. We used two optimization approaches: the typical single-stage (planting to heading) and three-stage model optimization (for planting to panicle initiation (PI), PI to heading (HD), and HD to physiological maturity (MT)) to simultaneously optimize all model parameters. Data for this study was collected over three years and six locations on seven California rice cultivars. A temperature-dependent systematic error was found for all cultivars and stages, however it was generally small (systematic error < 2.2). Both optimization approaches in both models resulted in only small changes in cardinal temperature relative to the default values and thus optimization of cardinal temperatures did not affect systematic error or model performance. Compared to single stage optimization, three-stage optimization had little effect on determining time to PI or HD but significantly improved the precision in determining the time from HD to MT: the RMSE reduced from an average of 6 to 3.3 in Oryza2000 and from 6.6 to 3.8 in CERES-Rice. With regards to systematic error, we found a trade-off between RMSE and systematic error when optimization objective set to minimize RMSE or systematic error. Therefore, it is important to find the limits within which the trade-offs between RMSE and systematic error are acceptable, especially in climate change studies where this can prevent erroneous conclusions.