G54A-01
Sustained Water Changes in California during Drought and Heavy Precipitation Inferred from GPS, InSAR, and GRACE
Abstract:
About 1200 GPS sites in the westernmost United States are used to weigh changes in surface water as a function of location from 2006 to 2015. The effect of known changes in water in artificial reservoirs is removed, allowing changes in the total of snow, soil moisture, and mountain fracture groundwater to be inferred from GPS.In this study water changes inferred from GPS are placed into the context of complementary InSAR and GRACE data. The southern Central Valley (the San Joaquin Valley and Tulare Basin) is subsiding at spectacular rates of 0.01 m/yr to 0.2 m/yr in response to groundwater management. We construct an elastic model of groundwater change of the southern Central Valley, using GRACE as the basis of total groundwater loss and InSAR to infer the lateral distribution of that groundwater loss. This elastic model of Central Valley groundwater loss is removed from the GPS displacements.
Because snow in California is insignificant in October, and because changes in soil moisture between successive autumns are small, we can infer changes in Sierra Nevada mountain fracture groundwater to be: –19 km3 during drought from 2006 to 2009, +35 km3 during heavy precipitation from 2009 to 2011, and –38 km3 during drought from 2011 to 2014 (start and end times are all in October). We infer changes in Sierra Nevada mountain groundwater to be playing an important role in modulating Central Valley groundwater loss. Total water in the Sierra Nevada recovered by 16 km3 from October 2014 to April 2015, but water is being lost again in summer 2015.