OS23B-1990
Analysis of Bubble Plume Distributions to Evaluate Methane Hydrate Decomposition on the Cascadia Margin
Abstract:
Methane gas is formed within the sediments of accretionary prisms by the biological and thermal degradation of organic matter. Some of this methane is trapped as solid-phase methane hydrate, the stability of which is temperature and pressure-dependent. Past fluctuations in global temperatures have resulted in the decomposition of continental margin gas hydrate reservoirs and subsequent emissions of methane, creating a positive feedback to global warming with additional impacts on the marine environment. Temperature data collected over the past four decades show that bottom water on the upper slope of the Washington State continental margin has undergone systematic warming. Thermal models of this heat propagation into the sediments indicate a 40 meter deepening of the methane hydrate stability depth (MHDS) that if correct, would suggest a preferential release of methane into the water column from these depths on the Cascadia margin.Location data for over 100 active methane seeps on the Cascadia margin were compiled from a variety of sources including research cruises, published literature, and local fishermen. Emission site locations show anomalous plume densities at depths associated with the MHDS, which lies at approximately 500 meters water depth in the NE Pacific. This supports the hypothesis that warming of seawater at intermediate depths due to contemporary climate change has begun to destabilize the Cascadia margin gas hydrate reservoir. While relatively small sample size and incomplete coverage due to the ad-hoc nature of data acquisition limit confidence in any conclusions drawn from this dataset, this study provides a framework for future analysis of methane plume distributions and supports the need for a comprehensive and systematic geophysical and geochemical examination of the Cascadia margin.