Assessment of extreme precipitation events over Amazon simulated by global climate models from HIGEM family

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Maria de Souza Custodio, University of Sao Paulo, Sao Paulo, United States, Tercio Ambrizzi, USP University of Sao Paulo, São Paulo, Brazil and Rosmeri Da Rocha, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
The increased horizontal resolution of climate models aims to improve the simulations accuracy and to understand the non-linear processes during interactions between different spatial scales within the climate system. Up to this moment, these interactions did not have a good representation on low horizontal resolution GCMs. The variations of extreme climatic events had been described and analyzed in the scientific literature. In a scenario of global warming it is necessary understanding and explaining extreme events and to know if global models may represent these events. The purpose of this study was to understand the impact of the horizontal resolution in high resolution coupled and atmospheric global models of HiGEM project in simulating atmospheric patterns and processes of interaction between spatial scales. Moreover, evaluate the performance of coupled and uncoupled versions of the High-Resolution Global Environmental Model in capturing the signal of interannual and intraseasonal variability of precipitation over Amazon region. The results indicated that the grid refinement and ocean-atmosphere coupling contributes to a better representation of seasonal patterns, both precipitation and temperature, on the Amazon region. Besides, the climatic models analyzed represent better than other models (regional and global) the climatic characteristics of this region. This indicates a breakthrough in the development of high resolution climate models. Both coupled and uncoupled models capture the observed signal of the ENSO and MJO oscillations, although with reversed phase in some cases. The interannual variability analysis showed that coupled simulations intensify the impact of the ENSO in the Amazon. In the intraseasonal scale, although the simulations intensify this signal, the coupled models present larger similarities with observations than the atmospheric models for the extremes of precipitation. The simulation of ENSO in GCMs can be attributed to their high resolution, mainly in the oceanic component, which contributes to the better solution of the small scale vortices in the ocean. This implies in improvements in the forecasting of sea surface temperature (SST) and as consequence in the ability of atmosphere to respond to this feature.