GC31D-1217
Validating long-term satellite-derived disturbance products: the case of burned areas

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Luigi Boschetti, University of Idaho, Moscow, ID, United States and David P Roy, South Dakota State University, Brookings, SD, United States
Abstract:
The potential research, policy and management applications of satellite products place a high priority on providing statements about their accuracy. A number of NASA, ESA and EU funded global and continental burned area products have been developed using coarse spatial resolution satellite data, and have the potential to become part of a long-term fire Climate Data Record. These products have usually been validated by comparison with reference burned area maps derived by visual interpretation of Landsat or similar spatial resolution data selected on an ad hoc basis. More optimally, a design-based validation method should be adopted that is characterized by the selection of reference data via a probability sampling that can subsequently be used to compute accuracy metrics, taking into account the sampling probability. Design based techniques have been used for annual land cover and land cover change product validation, but have not been widely used for burned area products, or for the validation of global products that are highly variable in time and space (e.g. snow, floods or other non-permanent phenomena). This has been due to the challenge of designing an appropriate sampling strategy, and to the cost of collecting independent reference data.

We propose a tri-dimensional sampling grid that allows for probability sampling of Landsat data in time and in space. To sample the globe in the spatial domain with non-overlapping sampling units, the Thiessen Scene Area (TSA) tessellation of the Landsat WRS path/rows is used. The TSA grid is then combined with the 16-day Landsat acquisition calendar to provide tri-dimensonal elements (voxels). This allows the implementation of a sampling design where not only the location but also the time interval of the reference data is explicitly drawn by probability sampling. The proposed sampling design is a stratified random sampling, with two-level stratification of the voxels based on biomes and fire activity (Figure 1).

The novel validation approach, used for the validation of the MODIS and forthcoming VIIRS global burned area products, is a general one, and could be used for the validation of other global products that are highly variable in space and time and is required to assess the accuracy of climate records. The approach is demonstrated using a 1 year dataset of MODIS fire products.