PP53B-2341
Sclerochronological analysis of Saxidomus gigantea: Implications for reconstructing past seasonality and sea ice extent in the Northern Pacific Ocean
Friday, 18 December 2015
Poster Hall (Moscone South)
Christine Bassett, University of Alabama, Tuscaloosa, AL, United States
Abstract:
Sclerochronological analysis of biogenic carbonates provides valuable paleoenvironmental information. Oxygen isotope analysis of bivalve shell yields information on the temperature of the water in which the organism grew. However, in coastal environments, variations in δ18Owater may complicate the interpretation of shell isotope profiles. Measuring and comparing the length of seasonal shell growth in select species of bivalves may complement isotopic analysis, together providing a more precise paleoclimate reconstruction. This project aims to determine the reliability of sclerochronological analysis of bivalves in reconstructing seasonality along the Northwest Coast of North America. To compare bivalves growing at different seasonal temperature conditions, samples of Saxidomus gigantea were collected from southern Alaska and northern British Columbia. Winter cessation lines were identified using oxygen isotope (δ18O) peaks from a profile of variation over the life of the clam, which was sampled sequentially from a section of its shell. Shell growth stops below ~4-5°C and so each winter cessation indicates temperatures lower than this threshold. Lunar-daily growth lines were counted between these winter growth cessation breaks, which quantitatively measure the length of the growing season. The resulting data were compared between habitats to assess if this is a useful method of determining the length of the growing season. If this method of assessing seasonality appears valid, it can be applied to ancient shells abundant in archaeological shell middens to make inferences about past seawater conditions and potentially indicate the presence or absence of the conditions necessary for sea ice accumulation.