EP42B-07
A subsurface model of the beaver meadow complex

Thursday, 17 December 2015: 11:50
2005 (Moscone West)
Caroline Nash1, Gordon Grant1, Brady A Flinchum2, Jd Lancaster1, Steve Holbrook2 and Loren G Davis1, (1)Oregon State University, Corvallis, OR, United States, (2)University of Wyoming, Laramie, WY, United States
Abstract:
Wet meadows are a vital component of arid and semi-arid environments. These valley spanning, seasonally inundated wetlands provide critical habitat and refugia for wildlife, and may potentially mediate catchment-scale hydrology in otherwise “water challenged” landscapes. In the last 150 years, these meadows have begun incising rapidly, causing the wetlands to drain and much of the ecological benefit to be lost. The mechanisms driving this incision are poorly understood, with proposed means ranging from cattle grazing to climate change, to the removal of beaver. There is considerable interest in identifying cost-effective strategies to restore the hydrologic and ecological conditions of these meadows at a meaningful scale, but effective process based restoration first requires a thorough understanding of the constructional history of these ubiquitous features.

There is emerging evidence to suggest that the North American beaver may have had a considerable role in shaping this landscape through the building of dams. This “beaver meadow complex hypothesis” posits that as beaver dams filled with fine-grained sediments, they became large wet meadows on which new dams, and new complexes, were formed, thereby aggrading valley bottoms. A pioneering study done in Yellowstone indicated that 32-50% of the alluvial sediment was deposited in ponded environments. The observed aggradation rates were highly heterogeneous, suggesting spatial variability in the depositional process – all consistent with the beaver meadow complex hypothesis (Polvi and Wohl, 2012).

To expand on this initial work, we have probed deeper into these meadow complexes using a combination of geophysical techniques, coring methods and numerical modeling to create a 3-dimensional representation of the subsurface environments. This imaging has given us a unique view into the patterns and processes responsible for the landforms, and may shed further light on the role of beaver in shaping these landscapes.