PP41A-2220
How Synchronous was the Transition into the Younger Dryas across the Euro-Atlantic Region?

Thursday, 17 December 2015
Poster Hall (Moscone South)
Frederik Schenk, Stockholm University, Department of Geological Sciences, Stockholm, Sweden
Abstract:
Observations of a currently weakening subpolar gyre south of Greenland has again increased scientific attention regarding the role of the Atlantic Meridional Overturning Circulation (AMOC) for the regional to global climate. The rapid climate shift of the Younger Dryas (YD, GS-1) cold reversal during the last deglaciation is attributed to an abrupt slowdown or collapse of the AMOC due to a strong meltwater pulse and/or the rapid disintegration of the Laurentide Ice sheet. Although such a dramatic event is not expected for the future, the spatiotemporal climatic response to such a slowdown is an interesting test case.

Two recently well dated proxy records around the North Sea region suggest a non-synchronous early cooling/onset of the YD compared to Greenland (NGRIP). Presentation #61803 discusses the hypothesis of a local cooling as a response to increased ice berg calving and/or meltwater from Fenno-Scandinavian Ice Sheet (FIS) during the late Alleröd warm phase (GI-1a).

Here we study CCSM3 model output from the quasi-transient atmosphere-ocean simulation (TraCE) where no strong contribution from FIS is considered from the late Alleröd into the YD. We evaluate to which extent the spatiotemporal temperature response to the AMOC slowdown of the simulation is synchronous over the Euro-Atlantic region and how atmospheric teleconnections reorganize during the rapid shift into the YD. In addition, we run time-slice experiments at high spatial resolution of around 100 km with the Community Earth System Model CESM1.0.5 for the late Alleröd and YD to compare spatial climatic differences for both periods taking into account the regional influence from continental ice sheets in more detail.