OS21A-1970
Watershed-Marine Linkages: Monitoring how Terrigenous Runoff and Wave-Induced Resuspension Affect Marine Sediment Dynamics in Bays with Coral Reefs, St. John, USVI

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Stephen Campbell1, Sarah C. Gray1, James Whinney2, Carlos E Ramos-Scharron3, Sean Campbell2 and Matthew C. LaFevor4, (1)University of San Diego, Department of Environmental and Ocean Sciences, San Diego, CA, United States, (2)James Cook University, Marine Geophysics Laboratory, Townsville, Australia, (3)University of Texas at Austin, Austin, TX, United States, (4)University of Maryland, National Socio-Environmental Synthesis Center, Annapolis, MD, United States
Abstract:
In the USVI, land-based sedimentation in coastal marine environments has increased due to watershed development and is a major cause of coral reef degradation. Watershed runoff and wave/current-induced resuspension of benthic sediment contribute to turbidity/sedimentation. Our objectives are to characterize the spatial and temporal variability of marine sediment dynamics in response to runoff and resuspension in shoreline and reef areas of St. John, USVI, and directly compare the efficacy of time-integrated vs. high-resolution sediment monitoring approaches.

To complement a six-year sediment trap study of sedimentation, nephelometers (10-min resolution) were deployed alongside sediment traps (26 day resolution) at four ephemeral stream outfalls and three reefs sites below comparable developed and minimally developed catchments. Watershed runoff was monitored using stream (10-min resolution) and peak crest (2-week resolution) gauges. Mean turbidity/deposition were 4/5 times greater at shore compared to reef sites, 5/6 times greater below developed compared to minimally developed catchments, 2/4 times greater during runoff compared to non-runoff periods, and 100/500 times background levels (time series median) following the largest runoff event of the 5-month time series. Turbidity values due to resuspension during non-runoff periods were primarily controlled by wave height (71% of the variability), tides, and the presence of finer sediment grains. However, the relative contribution to total sedimentation of resuspension vs. watershed runoff varied spatially between sites due to variations in bay geography, benthic sediment grain size, and catchment characteristics. Sediment traps and nephelometers recorded generally consistent temporal patterns of sedimentation at most sites. Though our study confirmed that watershed development increases turbidity and deposition in bays with coral reefs, multiple processes govern sediment dynamics and the distribution of sediments from the shoreline to the reef.