H11F-1404
Evaluating Urbanization Impacts from Non-Point Stormwater Runoff using Geospatial Analysis

Monday, 14 December 2015
Poster Hall (Moscone South)
Brik R Zivkovich and David C Mays, University of Colorado Denver, Denver, CO, United States
Abstract:
Sediments, nutrients and other chemical impairments caused by urbanization continue to deteriorate natural ecosystem processes, resulting in the current degraded state of urban surface waters. Understanding non-point source impacts on these natural ecosystems has become a prevalent topic in sustainable urban infrastructure design as efforts to restore the urban hydrologic regime continue to drive engineers, planners, and environmentalists to develop optimal design practices for rapidly expanding built environments. To best understand how and where these impairments are received, the U.S. Environmental Protection Agency and other organizations have adopted urban runoff programs to identify contributions from non-point sources. This presentation provides a geospatial analysis method for identifying non-point source watersheds, and associated sub-basins, that contribute the highest loads of pollutants to receiving urban streams and lakes. This method, using a form of linear matrix inversion, is an area-averaged weighting method for non-point pollutants that corresponds to a geospatial land cover analysis. This two-phase analysis can be used to aid all parties in understanding how different land use types affect urban stream systems and processes. Optimal locations for water quality features (i.e., best management practices) can be evaluated in order to reduce, capture, and treat stormwater runoff as close to the source as possible. These best management practices have the ability to operate most effectively when located properly, because their ability to act as a minor treatment and prevention system is of great important for the restoration of the urban hydrologic regime.