EP43B-0989
Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

Thursday, 17 December 2015
Poster Hall (Moscone South)
Anne Hayden-Lesmeister1, Jonathan W Remo1 and Bryan Piazza2, (1)Southern Illinois University, Carbondale, IL, United States, (2)The Nature Conservancy, Baton Rouge, LA, United States
Abstract:
The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB’s baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB’s altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.