OS31A-1980
Blade-order-dependent radiocarbon variability in brown seaweed (Undaria pinnatifida) reflected a cold Oyashio water intrusion event in an embayment of the Sanriku coast, northeastern Japan

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Naomi Satoh, Atmosphere and Ocean Research Institute University of Tokyo, Tokyo, Japan
Abstract:
Radiocarbon in dissolved inorganic carbon (DIC) in seawater varies greatly, both geographically and with depth. This “reservoir effect” is thought to be reflected in the radiocarbon content (∆14C) of marine organisms, via DIC fixation by primary producers and subsequent trophic transfer. The ∆14C of marine organismal soft tissues might thus provide unique information about their habitats, diets, migration and other environmental histories. However, the effectiveness of this approach has yet to be extensively explored, with data on ∆14C variability in soft tissues of marine organisms being markedly limited. Here we examined whether ∆14C values of individual pinnate blades (leaf-like structures) of brown seaweed (Undaria pinnatifida) reflect the ∆14C of DIC in the water current prevailing at the time of blade formation. The study was conducted in Otsuchi Bay located in the Sanriku coastal region, northeastern Japan, where 14C-depleted cold Oyashio current and warm Tsugaru current (high ∆14C) converge, affecting the physiology and growth of marine organisms growing there. U. pinnatifida individuals cultured in the bay (length of saprophytes, 140–215 cm) were harvested in April 2014 and ∆14C of blades were determined by accelerator mass spectrometry. Younger blades formed after the Oyashio water intrusion had significantly lower ∆14C values compared to older blades formed before the event. The ∆14C values of younger and older blades were generally consistent with the ∆14C of DIC in Oyashio (-60.5 ‰) and Tsugaru (24.9 ‰) waters, respectively. Thus, despite possible turnover of organic carbon in seaweed soft tissues, blade-order-dependent ∆14C variability appeared to strongly reflect the Oyashio intrusion event (radiocarbon shift) in the bay.