A13A-0273
Impact of ENSO on Western Pacific Cross-equatorial Flows
Monday, 14 December 2015
Poster Hall (Moscone South)
Yang Zhou1 and Hyemi Kim1,2, (1)Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States, (2)Stony Brook University, Stony Brook, NY, United States
Abstract:
The Western Pacific cross-equatorial flows (CEFs) show evident interannual variability in boreal summer. Results from Principle Component Analysis indicate that El Niño/Southern Oscillation modulates the interannual variability of Western Pacific CEFs. Both Matsuno-Gill mechanism and Lindzen-Nigam mechanism are introduced and applied in order to better explain the development of CEFs. Using the Mixed Layer Model by Stevens (2002) and methods stated by Back and Bretherton (2009), the low-level CEFs are decomposed into two pressure gradient contributions: free-atmosphere and boundary layer; and further found mainly contributed by the latter one. The intensity of boundary layer pressure gradient is highly coincide with the distribution of sea surface temperature (SST) gradient on Western Pacific, which is intensified by El Niño in boreal summer. These results show that the Lindzen-Nigam mechanism plays a major role on CEFs’ interannual change. An atmosphere general circulation model is included to support the influence of SST forcing on low-level CEFs. North American Multi-Model Ensemble is further adopted to understand the seasonal predictability of CEFs.