G23C-06
Differentiation of Secular and Postseismic Deformation in the Mojave Shear Zone in Southern California and Inference of Lithospheric Rheology

Tuesday, 15 December 2015: 14:55
2002 (Moscone West)
Zhengkang Shen, ITAG Institute of Theoretical and Applied Geophysics, Peking University, School of Earth and Space Science, Beijing, China, Shaozhuo Liu, Institute of Geology, China Earthquake Administration, Beijing, China and Roland Burgmann, University of California Berkeley, Berkeley, CA, United States
Abstract:
The 1992 Mw 7.3 Landers and 1999 Mw7.1 Hector Mine earthquakes struck the Eastern California Shear Zone (ECSZ) in the Mojave Desert, Southern California. Coseismic and postseismic deformation from these events affect efforts to use Global Positioning System (GPS) observations collected since these events to establish a secular surface velocity field, especially in the near field of the coseismic ruptures. We devise block motion models constrained by both historical pre-Landers triangulation and trilateration observations and post-Landers GPS measurements to recover the secular deformation field and differentiate the postseismic transients in the Mojave region. Postseismic transients are found to remain in various “interseismic” GPS velocity solutions in the form of 2-3 mm/yr excess right-lateral shear across the Landers and Hector Mine coseismic ruptures [Liu et al., 2015 JGR]. Postseismic GPS time series differentiated from the secular velocity field reveal enduring late-stage transient motions in the near field of the coseismic ruptures. Using the postseismic time series data as model constraints, we develop postseismic deformation model invoking afterlip on faults and viscoelastic relaxation in the lower crust and upper mantle. A Burgers body material and a Maxwell material are assumed for the lower crust and upper mantle respectively. Our preliminary modeling result, constrained using GPS time series data from the SCEC Crustal Motion Map 4.0 (covering the time period of 1992-2004), reveals that both the long-term viscosities for the lower crust and upper mantle are on the order of e+19 Pa-s. This finding differs significantly from the “Crème Brulee” model predictions about the rheological structure of the lower crust and upper mantle, in which the lower crust has a substantially higher viscosity. We are incorporating more GPS time series data into our model, particularly the ones from continuous sites of the Plate Boundary Observatory network with post-2004 time span, and the modeling result will be presented at the meeting.