Partially Ionized Plasma Three-Fluid Modeling of Magnetic Reconnection in the Sun Chromosphere

Thursday, 17 December 2015
Poster Hall (Moscone South)
Alejandro Alvarez Laguna, Katholieke Universiteit Leuven, Centre for mathematical Plasma-Astrophysics, Leuven, Belgium
Magnetic reconnection is present in most of the unsteady and eruptive phenomena in the Sun atmosphere, including Coronal Mass Ejections (CMEs) and solar flares. Also, it occurs in the chromosphere, bringing about chromospheric jets and spicules and being considered a likely mechanism to play an important role in heating up the corona. In this work, we present a computational model that simulates magnetic reconnection in the Sun chromosphere using a three-fluid model (electrons + ions + neutrals). The model treats separately ions, electrons and neutrals, considering mass, momentum and energy conservation for each fluid. The fluids interact among each other by means of collisions and chemical reactions. The charged particles heat fluxes are anisotropic with the magnetic field, following Braginskii’s description. This model also considers non-equilibrium partial ionization effects including electron impact ionization, radiative recombination reactions and charge exchange. The electromagnetic field evolution is represented by the full Maxwell’s equations, allowing for high frequency waves disregarded by the MHD approximation. Previous two-fluid simulations showed that the dynamics of ions and neutrals are decoupled during the reconnection process when the width of the current sheet becomes comparable to the ion scales. Also, the effect of the chemical non-equilibrium in the reconnection region plays a crucial role, yielding faster reconnection rates. We extended these simulations with a three-fluid model that considers separately the dynamics of electrons. This new model provides a better description of the complex dynamics taking place during the reconnection, both in Sweet-Parker reconnections and during the tearing instability. The results are compared with the two-fluid simulations.