T53C-04
How the Extension-Rate of Rifting Influences an Alpine-Type Orogens: insights from 3D analog models.

Friday, 18 December 2015: 14:25
306 (Moscone South)
Yago Nestola, University of Parma, Parma, Italy
Abstract:
Alpine-type orogens are interpreted as result from the collision of former rifted margins. Recent studies showed that the rift-architecture inheritance could play a critical role in controlling the 4D evolution of Alpine-type orogens. In this framework, differences of inversion modes between the internal and external zones of the Western Alps can be related to the pre-orogenic rift-related domains. The external zone is affected by mild reactivation of the former proximal margin domain. On the other hand, the internal zone results from the reactivation of the former distal margin domain. This caused the stacking of a complex pile of pre- and syn-rift sequences against the ‘necking zone’, that is the locus where the lithosphere dramatically thins. The ‘necking zone’ separates the proximal and distal domains and acts as a buttress for shortening. Indeed, both rift architecture and shape of necking play a fundamental role in the building up of an Alpine-type orogen. In this study, we use analog modeling to investigate the role of extension-rate in rift-architecture.

We simulated an ideal 4-layer lithosphere where brittle and ductile crustal layers rest on top of brittle and ductile mantle layers. The entire experimental lithosphere floats over a fluid analogue of the asthenosphere. Models were deformed pulling apart a mobile wall of the sandbox that confined the experimental lithosphere. We investigated three different extensional velocities, spanning one-order of magnitude. At the end of deformation, rift architectures show severe differences as a function of extension-rates, at both crustal and lithospheric scales. In particular, at lithospheric scales, localized necking occurred at low extension-rates, while a more distributed deformation happened with increasing the extensional velocity. At crustal scale, well-developed and localized necking zones formed for low and intermediate extension-rates, while tapering occurred over a wide cross-sectional length in high-velocity models.

Based on the results of our experimental programme, we infer that the inherited rift architectures that have been described in the Western Alps as the locus of major buttressing during the orogenic stage, were likely produced at intermediate to low extensional velocities.