PA33A-2176
Arctic Summer Sea-Ice Extent: How Free is Free?
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Bruno Tremblay1, Richard I Cullather2, Patricia DeRepentigny1, Stephanie L Pfirman3 and Robert Newton4, (1)McGill University, Montreal, QC, Canada, (2)University of Maryland College Park, College Park, MD, United States, (3)Barnard College, Closter, NJ, United States, (4)Columbia University of New York, Palisades, NY, United States
Abstract:
As Northern Hemisphere perennial sea ice cover continues a long-term downward trend, attention has begun to focus on the implications of the changing conditions. A summertime ice-free Arctic Ocean is frequently indicated as a signature milestone for these changes, however “ice-free” has a substantially different meaning among scientists and interested stakeholders. To climate scientists it may mean when there is so little sea ice that it plays a minimal role in the climate system. To those interested in development, it may mean a threshold where icebreaker support is not required. To coastal communities it may mean so little ice that hunting is not possible. To species dependent on sea ice, it may mean the point where they cannot find sufficient habitat to survive from spring until fall. In this contribution we document the projected seasonality of the sea ice retreat and address the following questions. For how long will the Arctic Ocean be ice free on average each year? What is the impact of such changes in the seasonality of the sea ice cover on species that are dependent on sea ice? To this end, we analyze the seasonal cycle in the sea-ice extent simulated by the Community Earth System Model 1 - Large Ensemble (CESM1-LE) output for the 21st century. CESM1-LE simulates a realistic late 20th, early 21st century Arctic climate with a seasonal cycle in sea ice extent and rate of decline in good agreement with observations. Results from this model show that even by the end of the 21st century, the length of the ice-free season is relatively short, with ice-free conditions mainly present for 2-3 months between August and October. The result is a much larger amplitude seasonal cycle when compared with the late 20th century climate.