H13C-1557
GIS as an Integration Tool for Hydrologic Modeling: Spatial Data Management, Analysis and Visualization

Monday, 14 December 2015
Poster Hall (Moscone South)
Angelique Lawrence, Shimelis Gebriye Setegn and Mehrnoosh Mahmoudi, Florida International University, Miami, FL, United States
Abstract:
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. The first phase of model development was initiated in 2014 using the MIKE SHE/MIKE 11 hydrological modeling package which has a geographic information systems (GIS) user interface built into its system that can directly use spatial GIS databases (geodatabases) for model inputs. This study developed an ArcGIS geodatabase to support the hydrological modeling work for SRS. The coupling of a geodatabase with MIKE SHE/MIKE 11 numerical models can serve as an efficient tool that significantly reduces the time needed for data preparation. The geodatabase provides an advanced spatial data structure needed to address the management, processing, and analysis of large GIS and timeseries datasets derived from multiple sources that are used for numerical model calibration, uncertainty analysis, and simulation of flow and contaminant fate and transport during extreme climatic events. The geodatabase developed is based on the ArcHydro and ArcGIS Base Map data models with modifications made for project specific input parameters. The significance of this approach was to ensure its replicability for potential application in other watersheds. This paper describes the process of development of the SRS geodatabase and the application of GIS tools to pre-process and analyze hydrological model data; automate repetitive geoprocessing tasks; and produce maps for visualization of the surface water hydrology of the Tims Branch watershed.

 

Key Words: GIS, hydrological modeling, geodatabase, hydrology, MIKE SHE/MIKE 11