EARA2014 (East Asia Radially Anisotropic Model Based on Adjoint Tomography) and its Interpretations: Insights to the Formation of the Hangai Dome and the Tibetan Plateau

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Min Chen1, Fenglin Niu1, Qinya Liu2 and Jeroen Tromp3, (1)Rice University, Houston, TX, United States, (2)University of Toronto, Physics, Toronto, ON, Canada, (3)Princeton University, Princeton, NJ, United States
EARA2014 –a 3-D radially anisotropic model of the crust and mantle beneath East Asia down to 900 km depth– is developed by adjoint tomography based on a spectral element method. The data set used for the inversion comprises 1.7 million frequency-dependent traveltime measurements from waveforms of 227 earthquakes recorded by 1869 stations. After 20 iterations, the new model (named EARA2014) exhibits sharp and detailed wave speed anomalies with improved correlations with surface tectonic units compared to previous models. As part of tectonic interpretations of EARA2014, we investigated the seismic wavespeed anomalies beneath two prominent uplifted regions in East Asia: (1) Hangai Dome, an intra-continental low-relief surface with more than 2 km elevation in central Mongolia, and (2) Tibetan Plateau, a vast continental-margin surface with an average elevation of 4.5 km in west China. We discover beneath Hangai Dome a deep low shear wavespeed (low-V) conduit indicating a slightly warmer (54 K–127 K) upwelling from the transition zone. We propose that the mantle upwelling induced decompression melting in the uppermost mantle and that excess heat associated with melt transport modified the lithosphere that isostatically compensates the surface uplift of Hangai Dome at upper mantle depths (> 80 km). On the other hand, we observe no discernable focused deep mantle upwelling directly beneath Tibetan Plateau, which is instead dominated by a strong high-V structure, appearing below 100 km depth and extending to the bottom of the mantle transition zone. However, we find a very strong and localized low-V anomaly beneath the Tibetan Plateau in the crust and uppermost mantle (at depths of ~50 km and 100 km) mainly confined within the Songpan Ganzi Fold Belt and the northern Qiangtang Block. This low-V anomaly is spatially linked to a low-V anomaly beneath the Chuandian Block in the same depth range, which is fed by a deep mantle upwelling directly beneath Hainan Volcano in south China. Implications of the observed high-V and low-V anomalies will be further discussed in terms of the formation of Tibetan Plateau.