H21P-03
Meltwater Temperature Variations in Rivers Draining Declining Alpine Glaciers

Tuesday, 15 December 2015: 08:45
3024 (Moscone West)
David Nigel Collins, University of Salford, School of Environment & Life Sciences, Salford, HD4, United Kingdom
Abstract:
Marked patterns of seasonal and diurnal variations of discharge and temperature characterise meltwater rivers draining from large Alpine glaciers. Meltwater temperature warms with distance downstream, influenced both by energy availability and the volume of meltwater flowing. The amount of meltwater produced depends also on energy availability but also on the area of ice substrate over which melt occurs. As climate warms, meltwater production by ablation in summer will first increase with increasing energy for melting, before decreasing as the area of ice available for melt decreases, off-setting continuing increase in energy availability. Future meltwater temperature changes will depend on the inter-relationship between increasing energy availability and enhancing volume of meltwater produced. Relationships between rates of ice melt, reduction in ice area, and meltwater production will influence melt water temperature changes as climate warms. Meltwater temperature is inversely related to discharge whilst positively related to heat availability. Records of water temperature and discharge of meltwaters in rivers draining from three valley glaciers in Kanton Wallis, Switzerland have been examined. Hourly data for the Massa, Grosser Aletschgletscher, for the period 2003-2014, the Gornera, Gornergletscher , 2007-2014, and Findelenbach, Findelengletscher, 2007-2014 obtained at distances of a few kilometres from the glacier portals have been analysed, for summer months, during which more than 90% of discharge occurs. Distinctive seasonal temperature regimes have highest annual water temperatures during low flows in May., but then as discharge increased with first increasing radiation, increasing ice area as the transient snow line moved up glacier, and higher air temperatures, water temperatures decreased. On a diurnal basis, meltwater temperatures increased with rising radiation ahead of rising discharge (discharge being delayed by flow through time within the glacier between ice surface and portal) before reducing through daily peak flows. These relationships are assessed with a simple radiation-forced model integrating changing ice areas, lengthening distances of water exposure radiation from the glacier portal and flow through velocities dependent on discharge.